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Propagation of a short laser pulse in a plasma
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The propagation of an electromagnetic pulse in a plasma is studied for pulse durations that are comparable
to the plasma period. When the carrier frequency of the incident pulse is much higher than the plasma
frequency, the pulse propagates without distortion at its group speed. When the carrier frequency is comparable
to the plasma frequency, the pulse is distorted and leaves behind it an electromagnetic wake.
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[. INTRODUCTION and propagates through the plasmaxor0. We assume that
the plasma is characterized by a plasma frequengy The
The propagation of an electromagnetic wave in a mediunwave equation obeyed dy(t,x) is given by
[1] is controlled by the dielectric function, which character-
izes the response of the medium to the applied electromag- (a§_023)§x+ wf))E(t,x)=O, )
netic field. The dielectric function of a plasma isbﬁ/wz,
wherew, is the plasma frequency, amlis the frequency of \nere 52 and 42, are second-order partial derivatives with
any Fourier component of the wave. This simple formulayeqnectto timet and spacex, and wherec is the speed of
also characterizes the response of a dielectric medium whq ht in vacuum
the Fourier spectrum of the wave contains frequencies tha Let o fot w ¥/C—x. SO thatt andx become dimen-
are much higher than the resonance frequencies of the me: p_ P ' ;
dium. Sionless. Then the wave equatit) becomes
When a monochromatic wave of frequeneyis incident
upon a vacuum-plasma boundary, a fractidn/2kt+Kk;) is
transmitted and a fractionk¢—k,)/(kt+k,) is reflected,
wherek, = w/c is the wave number of the incident wave, and  In general, some fraction of the incoming laser pulse is
kT=(w2—w§)1’2/c is the wave number of the transmitted reflected at the vacuum-plasma boundary, while the rest is
wave. Now consider an e|ectr0magnetic pu|se with Carrieﬁraﬂsmitted into the plasma. We denote the incident electric
frequencyw, and envelope frequenay,. The formulas for  field by E,(t,x), the reflected field bjg(t,x), and the trans-
the transmission and reflection of a monochromatic wave argitted field byE+(t,x). Since the electric field is continuous
also valid for a long pulse, provided one substituégsfor across the boundafy],
o. Wheno < w,, the incident pulse is reflected completely.
When w.>w,, the transmitted part of a long pulse propa- E(t,0)+ERg(t,0)=E+(t,0). 3
gates without distortion at its group speefl — w3/ w?)'
Eventually, the transmitted pulse disperses. These results agmilarly, since the magnetic field of the pulse is continuous
known to be valid forws<w, . In this paper we study elec- across the boundaify],
tromagnetic propagation in the complementary regime

(95— 32, +1)E(t,x)=0. 2

we~ wy . Short-pulse propagation is generally relevant when 9,E,(t,0) + 9,ER(t,0) = 9,E1(t,0). (4
the long-envelope approximation is not valid. A specific ex-
ample is the wakefield accelerator concghg]. We next take the temporal Laplace transform of H&s.

We use Laplace transform and Green function techniquegnq (4) to obtain the equivalent boundary conditions in
to analyze the interaction between the laser pulse and thl?aplace space

plasma. We find that the interaction can be divided into two
stages, one in which temporal transmission and reflection

occurs at the vacuum-plasma boundary, and one in which the Ei(s,0)+ Eg(s,0)=E+(s,0),

transmitted and reflected pulse propagate in the plasma and

vacuum, respectively. We then present details of what hap- 94E(s,0)+ d,Er(S,0) = 3,E1(s,0). (5)
pens at each stage, for incident pulses of varying carrier fre-

quency and duration. In general, the incident field, (t,x) propagates to the

right (toward the plasma while the reflected fielEg(t,x)
propagates to the leftaway from the plasma We may

We consider a laser pulse with electric fidkdt,x) that therefore assume th&,(t,x) and Eg(t,x) have the space-
propagates in vacuum wher< 0, enters the plasma at=0, time dependencies

II. ANALYSIS
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E,(t,x)=E(t—x),

Er(t,x)=Eg(t+x), (6)
which are consistent with the reduced equations

(d1+ 3 Ei(1,x)=0,

(01— 3 Er(t,x)=0. (7)

By taking the temporal Laplace transform of E¢g), and
letting x— 0, we obtain the boundary expressions

d,E,(s,0)=—sE(s,0),
d,ERr(S,0)=SEg(S,0). ®)

The Laplace transfornE(s,x) of the transmitted field
E+(t,x) satisfies the equation

[d2,—(s?+1)]E1(s,x)=0, 9)

which follows from Eq.(2). We choose the causal solution
(note thatx>0)

Er(s,x)=Eq(s,0)exd —(s>+1)"%], (10
so that, at the boundamy=0, we have
d,E+(s,0)= — (s?+1)Y2E(s,0). (11)

Substitution of Egs(8) and (11) into Eqg. (5) yields the
boundary condition

SE (s,0)—SEg(s,0)=(s2+1)Y2E(s,0). (12
Equations(5) and(12) imply that

s—(s?+1)Y¥2__
= )1,ZE|(S,0),

Eg(s,0)=————
R(s.0) s+(s?+1

— 2 -
ET(S’O):W_S'_]_)l/ZEl(S’O)' (13)

It follows from the second of Eqg7) that
Er(s,X)=ER(s,0)ex(sX). (14
Finally, Egs.(10), (13), and(14) yield

s—(s?+1)Y?

Wexq SX)E_|( s,0),

Er(S,X)=

— 2s 2 1/2,
ET(s,x)—S+(Sz+1)1/2ex;{—(s +1)“X]E,(s,0).
(15

The coefficients of,(s,0) in Eq.(15) are just the Green
functionsI'g(s,x) andI'{(s,X) in Laplace space for the re-

TABLE I. Definition of the pulse classification scheme em-
ployed in the text.

Pulse characteristic Parameter regime
Long duration(LD) we<1
Intermediate duratiofiD) we=1
Short duration(SD) we>1
Low frequency(LF) w:.<1
Intermediate frequencyiF) w.=1
High frequency(HF) w1

T'r(s,X) = R(S)GR(S,X), (16)
where

Rs) s—(s2+1)12
S)=———"—,
s+(s?+1)M?

Gr(S,X) = eXp(SX). (17)

From the above discussion, it is clear tlR{s) represents
the reflection of the incident pulse at the vacuum-plasma
surface whereas the fact@g(s,x) accounts for the subse-
quent propagation of the reflected pulse in vacuum.

Similarly, we write the transmission Green function in the
form

'1(s,X)=T(5)Gr(s,%), (18)
where
[ —
s+(s?+1)
Gr(s,x)=exd — (s2+1)Y]. (19

Here T(s) represents the transmission of the incident pulse
across the vacuum-plasma surface, whereas the factor
Gr(s,x) represents the subsequent propagation of the trans-
mitted pulse in the plasma.

We see from Eqs(17) and(19) that R(s) and T(s) are
related through the equation

T(s)=1+R(s), (20)

which just states the fact that the electric field is conserved.

The influence of pulse duration and carrier frequency on
the pulses’ transmission and subsequent propagation in a
plasma can be investigated by considering boundary fields
E,(t,0) of the form

E,(t,0)=exp — w’t?)cog wt). (21)
The parameterso, and w. are measures of the temporal

envelope width and carrier frequency, respectively, of the
incident pulse at th&=0 boundary. We give in Table | a

flected and transmitted pulse, respectively. We write the reelassification of the incident puls€21) at the boundary.

flection Green function in the form

The inverse temporal Laplace transform of E20) is [4]
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FIG. 1. Temporal evolution of the reflection resporisgt,0)
[Eg. (24)] at the vacuum-plasma boundary, for an incident pulse o
intermediate duration.=1) and carrier frequencw.=1 (dot-
ted), w.=3 (dashegl and w.= 10 (solid).

T(t)=6(t) = (2/)I(H(H). (22)
T(t) represents the part of the laser-plasma interaction i
which the incident pulse is transmitted across the vacuu
plasma boundaryx=0. The first term in Eq(22) represents

the undistorted transmission of a pulse into the plasma, while

the second term represents the reflectk{h) atx=0,

R(t)=—(2/) (D H(t). (23
This is evident by comparing Eq20) with Eq. (22).
Equation(23) shows that the reflection of the laser pulse at
the vacuum-plasma boundary is not instantaneous, but rath
a decaying, oscillatory function of time. This indicates that
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seen in Figs. 1 and 2 that the reflection response diminishes
as the carrier frequency of the pulse is increased. We also
note that as the duration of a pulse is shortefied, asw, is
increased beyond 1), the reflection response diminishes. This
is consistent with the fact that, as an incident pulse is short-
ened, more of it will already have entered and propagated
into the plasma before the plasma’s delayed reflection re-
sponsdas described below ER3)] takes place. In particu-
lar, if we>1, the pulse is transmitted completely, with no
distortion.

The propagation of the reflected pulse in vacuum is char-

‘a_cterized by the functio(t,x), which is the inverse of

Gg(s,x) in Eq. (17),
Gr(t,x)=8(t+x). (25

This means that the reflected pulEg(t,x) has the space-

I1'\ime dependence Ex(t,x)=Eg(t+x), and propagates

through the vacuum in the negatixedirection away from
the vacuum-plasma boundary, and without distortion.

We now focus on the transmitted pul&e (t,x). The
propagation of the transmitted pulse through the plasma is
characterized by the functidd(t,x) given by the inverse of
G1(s,x) in Eq. (19). G+(t,x) is found by first writing

G+(s,x) as the spatial derivative

there is a harmonic response in the plasma to the incident

pulse, which produces a delayed, rather than instantaneous,

reflected pulse. This response takes the form of harmoni

oscillations of plasma charges about their equilibrium posi-

tions, which are induced by the incident sinusoidal pulse.

One can investigate the dependence of the reflected pulse
atx=0 on the duration and frequency of an impinging pulse

E,(t,0) by calculating the convolution
ER(t,0)=J E (t',0)R(t—t")dt’ (29

for different values of the parametedg and w. in E(t,0),
whereE,(t,0) is given by Eq.21). Figure 1 shows the re-

Gr(s,%)=—d,F1(s,X), (26)
er
where
— exfd — (s?+1)Y%]
c Fr(sX= == 7 (27
The inverse ofF 1(s,x) is given by[4]
Fr(t,%)=Jo[ (t*=x*)"?]H(t—x), (28)
so that
2_ g2\l
GT(t,x)=6(t—x)—xMH(t—x). (29

(t2_ X2)1/2

Equation(29) represents the combined effect of a distortion-

flection response for incident pulses of intermediate duratiofess propagation of the transmitted pui§iest term) and the

(ID), with carrier frequencies varying from intermedidlE)

to high (HF). Figure 2 shows the reflection response for in-
cident pulses of short duratigi$D), again with carrier fre-
guencies varying from intermediafé-) to high (HF). It is

-0.1

10 15

FIG. 2. Same as in Fig. 1, but for an incident pulse of short
duration (@.=5).

propagation of a dispersive wake generated by the plasma
(second term

We next compute the total Green functidiy(t,x) by
inverting Eq.(18). One way to do this is to compui&(t,x)
as the convolution

©

FT(t,x)=f T(t=t)G(t' x)dt, (30)

whereT(t) is given by Eq.(22), and G¢(t,x) by Eq. (29).
Again, Eq.(30) clearly shows the two-stage process of trans-
mission followed by propagation. Analytic evaluation of Eq.
(30) is quite involved. However, there is a simpler method
for obtaining I't(t,x) analytically that avoids integration,
and requires only the computation of derivatives. From Egs.
(18) and (19), we see thaf'{(s,x) can be written as the
derivative
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FIG. 3. Spatial dependence of a transmitted p&#20x) [Eq. FIG. 4. Same as in Fig. 3, but with incident pulse parameters
(36)] at timet=20 (solid). The incident pulse crossed the vacuum- w.=1 (ID) andw,=1.5 (IF).
plasma interface at=0, and had a spatial dependence in vacuum
characterized by Eq21), w,=1 (ID), andw.=10 (HF). The inci-
dent pulse’s spatial dependence translateid=t20 is shown by the
dotted curve, for comparison with the resulting transmitted pulse.

develops an electromagnetiEM) wake. In the Appendix,
we derive the following perturbative expansions fQy and
v, in the high-frequency case:

Fr(s,x)=—20,{sf(s,x)], @31 vg~1—€%2— €8,
where vp=log~1+e2+3¢"8, (37)
F(sx) = exf — (s°+1)"] ' 32 Wheree=w,/w.. The right sides of Eqs37) are just the
T [s+ (24 1)1?)(s24 1) 12 first three terms in the MacLaurin expansions of{(d%)*?
and (1- €?) 12
f(s,x) has the inverse transforf#] We next consider the propagation of shBD) incident
x| 112 pulses. Figure 5 shows a plot of an incident SD-IF pulse.
F(t,x)=F(t,x)H(t—x) = _) I [ (2= x2)M2JH(t—x). As expected, the wake generation is smaller than for the
t+Xx incident ID-IF pulse. And as the frequency of the incident

(33 sD pulse is increased, it is found that wake generation is

This inverse transform only holds for>0, which is in ac- practically nonexistent.

cord with our assumptions of the pulse entering the plasma at

x=0, and propagating into the plasma far>0. Since Ill. SUMMARY
F(0",x)=0 for x>0, we have from standard Laplace trans-
form theory that),F (t,x) is the inverse transform &ff(s,x).
Therefore, from Eq(31), we have

In this paper we considered the transmission and reflec-
tion of an electromagnetic pulse at a vacuum-plasma bound-
ary, and the subsequent propagation of the transmitted pulse

—_o5q2 in the plasma. We extended the well-known theory for long
Tr(tx) 205F (6. (34) pulses into the short-pulse regime, in which the pulse dura-

The term—207t2X}'(t,x) in Eq. (34) represents a modification tion is comparable to the inverse plasma frequency. When

to the incident pulse, caused by reflection at the vacuumt’€ carrier frequency of the incident pulse is much higher
an the plasma frequency, most of the incident pulse is

lasma boundary and dispersion in the plasma. It is given b X > ; ) :
P 4 P P g ransmitted without distortion. Subsequently, the transmitted

, Xt , Xt 2(t—x) pulse pr'opagates Without distortion at its group speed. When
— 29, F(t,x)=— tT‘]O(t —X°)+ r— > the carrier frequency is comparable to the plasma frequency,
X X (t+Xx) the transmitted pulse is distorted, and leaves behind it an

X J,(2—x?). (35) electromagnetic wake. The reflected pulse is delayed relative
to the incident pulse, and is also distorted. When the carrier
From Eqs(15), (18), and(19), we see that the transmitted
pulseE+(t,x) is given by the Green function integral

0.06
ET(t,x):f E,(t',00T(t—t’,x)dt’. (36) 8'8‘2‘
o - O

L 0

We next perform the integration in E¢36) for incident -0.02

pulses of the form21). We first consider incident pulses of -0.04

intermediate duration. Figures 3 and 4 show plots of the -0.06 ¥

propagation of ID-HF and ID-IF incident pulses, respec- 16 17 18 19 20 21

tively.

We see that the high-frequency incident pulse propagates
practically undisturbed across the vacuum-plasma interface FIG. 5. Same as in Fig. 3, but with incident pulse parameters
and into the plasma, while the intermediate-frequency puls@.=5 (SD) and w.=1.5 (IF).

X
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frequency is less than the plasma frequency, the inciderinsatz (A7) corresponds to a pulse that has a carrier fre-
pulse is absorbed by the plasma before being reemitted. quency of unity and an amplitude that varies on the slow
scale¢;. For this amplitude variatiorg is the group speed of
ACKNOWLEDGMENTS the pulse, and the characteristic variables are proportional to
time and distance measured in the pulse frame. One now
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APPENDIX: PROPAGATION It follows from Eg. (A8) and ansatzA7) that
OF A HIGH-FREQUENCY PULSE
Bo=—1/2. (A9)
Let wt—t, ox/c—X, and w,/w.— €, so thatt and x _
become dimensionless. Then the wave equatiorcan be  In third order,
written as 2 2
—4B2(07071—a§0§1)E=0. (A10)

(95— 02, + €2)E=0. (A1)
o 3 Equation(A10) is consistent with ansatA7), in whichE is
The study of pulse propagation is facilitated by the characassumed to be independent&fand ;. In fourth order,

teristic transformation 5 ) ) ) X
~[4Bo(55 = 92 ¢ ) T 2Bo 5, — 0% ¢ )+ (2Ba+ B3)

r=t—Bx,£=x—Bt, (A2) 72 nn
o _ x(d% , —d% . )]E=O0. (A11)
whereB<1. In terms of the characteristic variablesndé, 070 =0%0

the wave equatioAl) can be rewritten as The pulse has a carrier frequency of unity by construction, so

1— B2) (3% — d2.)+ €21E=0. A3 the dependence d& on 7, cannot be oscillatory. It follows
L(A=B)97 = 9 + €] A3) " from this constraint that (B,+ B2)=0 and, hence, that

One can solve EqA3) by using multiple scale analysis

[5]. To do this, one introduces the time and distance scales Ba=—1/8. (A12)
=€ = €. (A4)  The group spee@~1— €%/2— /8, which is just the first

three terms in the Maclaurin expansion of{#%)Y2 The

Correct to second order, one can write remaining nonzero terms in EGA11) are
. 2 _
0~ 0, + €0, + €%, , (2id,,+d% ¢ )B=0, (A13)
9:~d, +€d, + €29 . (A5) which describe the dispersal of the pulse.
£ 9%, 131 &

Finally, note that ansatA7) constrains the phase speed
Guided by the well-known characteristics of a long pulse, welo be the inverse of the group speed. Since no contradictions
assume that appear in the subsequent analysis, the assumptions underly-
ing ansatzZ/A7) are correct. One can also use the ansatz

B~1+€*By+e'B, (A6) i .
g E(7,8)=B(m,é)exdivéo—i(1-vpB)7o], (Al4)
an
which does not constrain the phase speed, but leads to the
E(7,6)=B(7,,&)exp —iT). (A7) same result.
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