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Propagation of a short laser pulse in a plasma
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The propagation of an electromagnetic pulse in a plasma is studied for pulse durations that are comparable
to the plasma period. When the carrier frequency of the incident pulse is much higher than the plasma
frequency, the pulse propagates without distortion at its group speed. When the carrier frequency is comparable
to the plasma frequency, the pulse is distorted and leaves behind it an electromagnetic wake.
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I. INTRODUCTION

The propagation of an electromagnetic wave in a med
@1# is controlled by the dielectric function, which characte
izes the response of the medium to the applied electrom
netic field. The dielectric function of a plasma is 12vp

2/v2,
wherevp is the plasma frequency, andv is the frequency of
any Fourier component of the wave. This simple formu
also characterizes the response of a dielectric medium w
the Fourier spectrum of the wave contains frequencies
are much higher than the resonance frequencies of the
dium.

When a monochromatic wave of frequencyv is incident
upon a vacuum-plasma boundary, a fraction 2kI /(kT1kI) is
transmitted and a fraction (kT2kI)/(kT1kI) is reflected,
wherekI5v/c is the wave number of the incident wave, a
kT5(v22vp

2)1/2/c is the wave number of the transmitte
wave. Now consider an electromagnetic pulse with car
frequencyvc and envelope frequencyve . The formulas for
the transmission and reflection of a monochromatic wave
also valid for a long pulse, provided one substitutesvc for
v. Whenvc<vp , the incident pulse is reflected complete
When vc.vp , the transmitted part of a long pulse prop
gates without distortion at its group speedc(12vp

2/vc
2)1/2.

Eventually, the transmitted pulse disperses. These result
known to be valid forve!vp . In this paper we study elec
tromagnetic propagation in the complementary regi
ve;vp . Short-pulse propagation is generally relevant wh
the long-envelope approximation is not valid. A specific e
ample is the wakefield accelerator concept@2,3#.

We use Laplace transform and Green function techniq
to analyze the interaction between the laser pulse and
plasma. We find that the interaction can be divided into t
stages, one in which temporal transmission and reflec
occurs at the vacuum-plasma boundary, and one in which
transmitted and reflected pulse propagate in the plasma
vacuum, respectively. We then present details of what h
pens at each stage, for incident pulses of varying carrier
quency and duration.

II. ANALYSIS

We consider a laser pulse with electric fieldE(t,x) that
propagates in vacuum whenx,0, enters the plasma atx50,
561063-651X/97/56~6!/7174~5!/$10.00
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and propagates through the plasma forx.0. We assume tha
the plasma is characterized by a plasma frequencyvp . The
wave equation obeyed byE(t,x) is given by

~] tt
2 2c2]xx

2 1vp
2!E~ t,x!50, ~1!

where] tt
2 and ]xx

2 are second-order partial derivatives wi
respect to timet and spacex, and wherec is the speed of
light in vacuum.

Let vpt→t, vpx/c→x, so thatt and x become dimen-
sionless. Then the wave equation~1! becomes

~] tt
2 2]xx

2 11!E~ t,x!50. ~2!

In general, some fraction of the incoming laser pulse
reflected at the vacuum-plasma boundary, while the res
transmitted into the plasma. We denote the incident elec
field by EI(t,x), the reflected field byER(t,x), and the trans-
mitted field byET(t,x). Since the electric field is continuou
across the boundary@1#,

EI~ t,0!1ER~ t,0!5ET~ t,0!. ~3!

Similarly, since the magnetic field of the pulse is continuo
across the boundary@1#,

]xEI~ t,0!1]xER~ t,0!5]xET~ t,0!. ~4!

We next take the temporal Laplace transform of Eqs.~3!
and ~4! to obtain the equivalent boundary conditions
Laplace space,

ĒI~s,0!1 ĒR~s,0!5 ĒT~s,0!,

]xĒI~s,0!1]xĒR~s,0!5]xĒT~s,0!. ~5!

In general, the incident fieldEI(t,x) propagates to the
right ~toward the plasma!, while the reflected fieldER(t,x)
propagates to the left~away from the plasma!. We may
therefore assume thatEI(t,x) and ER(t,x) have the space
time dependencies
7174 © 1997 The American Physical Society
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56 7175PROPAGATION OF A SHORT LASER PULSE IN A PLASMA
EI~ t,x!5EI~ t2x!,

ER~ t,x!5ER~ t1x!, ~6!

which are consistent with the reduced equations

~] t1]x!EI~ t,x!50,

~] t2]x!ER~ t,x!50. ~7!

By taking the temporal Laplace transform of Eqs.~7!, and
letting x→0, we obtain the boundary expressions

dxĒI~s,0!52sĒI~s,0!,

dxĒR~s,0!5sĒR~s,0!. ~8!

The Laplace transformĒT(s,x) of the transmitted field
ET(t,x) satisfies the equation

@dxx
2 2~s211!# ĒT~s,x!50, ~9!

which follows from Eq.~2!. We choose the causal solutio
~note thatx.0)

ĒT~s,x!5 ĒT~s,0!exp@2~s211!1/2x#, ~10!

so that, at the boundaryx50, we have

dxĒT~s,0!52~s211!1/2ĒT~s,0!. ~11!

Substitution of Eqs.~8! and ~11! into Eq. ~5! yields the
boundary condition

sĒI~s,0!2sĒR~s,0!5~s211!1/2ĒT~s,0!. ~12!

Equations~5! and ~12! imply that

ĒR~s,0!5
s2~s211!1/2

s1~s211!1/2
ĒI~s,0!,

ĒT~s,0!5
2s

s1~s211!1/2
ĒI~s,0!. ~13!

It follows from the second of Eqs.~7! that

ĒR~s,x!5 ĒR~s,0!exp~sx!. ~14!

Finally, Eqs.~10!, ~13!, and~14! yield

ĒR~s,x!5
s2~s211!1/2

s1~s211!1/2
exp~sx!ĒI~s,0!,

ĒT~s,x!5
2s

s1~s211!1/2
exp@2~s211!1/2x# ĒI~s,0!.

~15!

The coefficients ofĒI(s,0) in Eq.~15! are just the Green
functionsḠR(s,x) and ḠT(s,x) in Laplace space for the re
flected and transmitted pulse, respectively. We write the
flection Green function in the form
-

ḠR~s,x!5R̄~s!ḠR~s,x!, ~16!

where

R̄~s!5
s2~s211!1/2

s1~s211!1/2
,

ḠR~s,x!5exp~sx!. ~17!

From the above discussion, it is clear thatR̄(s) represents
the reflection of the incident pulse at the vacuum-plas
surface whereas the factorḠR(s,x) accounts for the subse
quent propagation of the reflected pulse in vacuum.

Similarly, we write the transmission Green function in th
form

ḠT~s,x!5 T̄~s!ḠT~s,x!, ~18!

where

T̄~s!5
2s

s1~s211!1/2
,

ḠT~s,x!5exp@2~s211!1/2x#. ~19!

Here T̄(s) represents the transmission of the incident pu
across the vacuum-plasma surface, whereas the fa
ḠT(s,x) represents the subsequent propagation of the tr
mitted pulse in the plasma.

We see from Eqs.~17! and ~19! that R̄(s) and T̄(s) are
related through the equation

T̄~s!511R̄~s!, ~20!

which just states the fact that the electric field is conserv
The influence of pulse duration and carrier frequency

the pulses’ transmission and subsequent propagation
plasma can be investigated by considering boundary fie
EI(t,0) of the form

EI~ t,0!5exp~2ve
2t2!cos~vct !. ~21!

The parametersve and vc are measures of the tempor
envelope width and carrier frequency, respectively, of
incident pulse at thex50 boundary. We give in Table I a
classification of the incident pulses~21! at the boundary.

The inverse temporal Laplace transform of Eq.~20! is @4#

TABLE I. Definition of the pulse classification scheme em
ployed in the text.

Pulse characteristic Parameter regime

Long duration~LD! ve!1
Intermediate duration~ID! ve.1
Short duration~SD! ve@1
Low frequency~LF! vc!1
Intermediate frequency~IF! vc.1
High frequency~HF! vc@1
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7176 56BORGE NODLAND AND C. J. McKINSTRIE
T~ t !5d~ t !2~2/t !J2~ t !H~ t !. ~22!

T(t) represents the part of the laser-plasma interaction
which the incident pulse is transmitted across the vacu
plasma boundaryx50. The first term in Eq.~22! represents
the undistorted transmission of a pulse into the plasma, w
the second term represents the reflectionR(t) at x50,

R~ t !52~2/t !J2~ t !H~ t !. ~23!

This is evident by comparing Eq.~20! with Eq. ~22!.
Equation~23! shows that the reflection of the laser pulse
the vacuum-plasma boundary is not instantaneous, but ra
a decaying, oscillatory function of time. This indicates th
there is a harmonic response in the plasma to the incid
pulse, which produces a delayed, rather than instantane
reflected pulse. This response takes the form of harmo
oscillations of plasma charges about their equilibrium po
tions, which are induced by the incident sinusoidal pulse

One can investigate the dependence of the reflected p
at x50 on the duration and frequency of an impinging pu
EI(t,0) by calculating the convolution

ER~ t,0!5E
2`

`

EI~ t8,0!R~ t2t8!dt8 ~24!

for different values of the parametersve andvc in EI(t,0),
whereEI(t,0) is given by Eq.~21!. Figure 1 shows the re
flection response for incident pulses of intermediate dura
~ID!, with carrier frequencies varying from intermediate~IF!
to high ~HF!. Figure 2 shows the reflection response for
cident pulses of short duration~SD!, again with carrier fre-
quencies varying from intermediate~IF! to high ~HF!. It is

FIG. 1. Temporal evolution of the reflection responseER(t,0)
@Eq. ~24!# at the vacuum-plasma boundary, for an incident pulse
intermediate duration (ve51) and carrier frequencyvc51 ~dot-
ted!, vc53 ~dashed!, andvc510 ~solid!.

FIG. 2. Same as in Fig. 1, but for an incident pulse of sh
duration (ve55).
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seen in Figs. 1 and 2 that the reflection response diminis
as the carrier frequency of the pulse is increased. We
note that as the duration of a pulse is shortened~i.e., asve is
increased beyond 1), the reflection response diminishes.
is consistent with the fact that, as an incident pulse is sh
ened, more of it will already have entered and propaga
into the plasma before the plasma’s delayed reflection
sponse@as described below Eq.~23!# takes place. In particu-
lar, if ve@1, the pulse is transmitted completely, with n
distortion.

The propagation of the reflected pulse in vacuum is ch
acterized by the functionGR(t,x), which is the inverse of
ḠR(s,x) in Eq. ~17!,

GR~ t,x!5d~ t1x!. ~25!

This means that the reflected pulseER(t,x) has the space
time dependence ER(t,x)5ER(t1x), and propagates
through the vacuum in the negativex direction away from
the vacuum-plasma boundary, and without distortion.

We now focus on the transmitted pulseET(t,x). The
propagation of the transmitted pulse through the plasm
characterized by the functionGT(t,x) given by the inverse of
ḠT(s,x) in Eq. ~19!. GT(t,x) is found by first writing
ḠT(s,x) as the spatial derivative

ḠT~s,x!52]xF̄T~s,x!, ~26!

where

F̄T~s,x!5
exp@2~s211!1/2x#

~s211!1/2
. ~27!

The inverse ofF̄T(s,x) is given by@4#

FT~ t,x!5J0@~ t22x2!1/2#H~ t2x!, ~28!

so that

GT~ t,x!5d~ t2x!2x
J1@~ t22x2!1/2#

~ t22x2!1/2
H~ t2x!. ~29!

Equation~29! represents the combined effect of a distortio
less propagation of the transmitted pulse~first term! and the
propagation of a dispersive wake generated by the pla
~second term!.

We next compute the total Green functionGT(t,x) by
inverting Eq.~18!. One way to do this is to computeGT(t,x)
as the convolution

GT~ t,x!5E
2`

`

T~ t2t8!GT~ t8,x!dt8, ~30!

whereT(t) is given by Eq.~22!, andGT(t,x) by Eq. ~29!.
Again, Eq.~30! clearly shows the two-stage process of tran
mission followed by propagation. Analytic evaluation of E
~30! is quite involved. However, there is a simpler meth
for obtaining GT(t,x) analytically that avoids integration
and requires only the computation of derivatives. From E
~18! and ~19!, we see thatḠT(s,x) can be written as the
derivative

f

t
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56 7177PROPAGATION OF A SHORT LASER PULSE IN A PLASMA
ḠT~s,x!522]x@s f~s,x!#, ~31!

where

f ~s,x!5
exp@2~s211!1/2x#

@s1~s211!1/2#~s211!1/2
. ~32!

f (s,x) has the inverse transform@4#

F~ t,x!5F~ t,x!H~ t2x!5S t2x

t1xD 1/2

J1@~ t22x2!1/2#H~ t2x!.

~33!

This inverse transform only holds forx.0, which is in ac-
cord with our assumptions of the pulse entering the plasm
x50, and propagating into the plasma forx.0. Since
F(01,x)50 for x.0, we have from standard Laplace tran
form theory that] tF(t,x) is the inverse transform ofs f(s,x).
Therefore, from Eq.~31!, we have

GT~ t,x!522] tx
2 F~ t,x!. ~34!

The term22] tx
2 F(t,x) in Eq. ~34! represents a modificatio

to the incident pulse, caused by reflection at the vacuu
plasma boundary and dispersion in the plasma. It is given

22] tx
2 F~ t,x!52

xt

t1x
J0~ t22x2!1S xt

t1x
1

2~ t2x!

~ t1x!2 D
3J2~ t22x2!. ~35!

From Eqs.~15!, ~18!, and~19!, we see that the transmitte
pulseET(t,x) is given by the Green function integral

ET~ t,x!5E
2`

`

EI~ t8,0!GT~ t2t8,x!dt8. ~36!

We next perform the integration in Eq.~36! for incident
pulses of the form~21!. We first consider incident pulses o
intermediate duration. Figures 3 and 4 show plots of
propagation of ID-HF and ID-IF incident pulses, respe
tively.

We see that the high-frequency incident pulse propag
practically undisturbed across the vacuum-plasma inter
and into the plasma, while the intermediate-frequency pu

FIG. 3. Spatial dependence of a transmitted pulseET(20,x) @Eq.
~36!# at time t520 ~solid!. The incident pulse crossed the vacuum
plasma interface att50, and had a spatial dependence in vacu
characterized by Eq.~21!, ve51 ~ID!, andvc510 ~HF!. The inci-
dent pulse’s spatial dependence translated tot520 is shown by the
dotted curve, for comparison with the resulting transmitted puls
at
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develops an electromagnetic~EM! wake. In the Appendix,
we derive the following perturbative expansions forvg and
vp in the high-frequency case:

vg'12e2/22e4/8,

vp51/vg'11e2/213e4/8, ~37!

wheree5vp /vc . The right sides of Eqs.~37! are just the
first three terms in the MacLaurin expansions of (12e2)1/2

and (12e2)21/2.
We next consider the propagation of short~SD! incident

pulses. Figure 5 shows a plot of an incident SD-IF pulse
As expected, the wake generation is smaller than for

incident ID-IF pulse. And as the frequency of the incide
SD pulse is increased, it is found that wake generation
practically nonexistent.

III. SUMMARY

In this paper we considered the transmission and refl
tion of an electromagnetic pulse at a vacuum-plasma bou
ary, and the subsequent propagation of the transmitted p
in the plasma. We extended the well-known theory for lo
pulses into the short-pulse regime, in which the pulse du
tion is comparable to the inverse plasma frequency. W
the carrier frequency of the incident pulse is much high
than the plasma frequency, most of the incident pulse
transmitted without distortion. Subsequently, the transmit
pulse propagates without distortion at its group speed. W
the carrier frequency is comparable to the plasma freque
the transmitted pulse is distorted, and leaves behind it
electromagnetic wake. The reflected pulse is delayed rela
to the incident pulse, and is also distorted. When the car

.

FIG. 4. Same as in Fig. 3, but with incident pulse paramet
ve51 ~ID! andvc51.5 ~IF!.

FIG. 5. Same as in Fig. 3, but with incident pulse paramet
ve55 ~SD! andvc51.5 ~IF!.
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7178 56BORGE NODLAND AND C. J. McKINSTRIE
frequency is less than the plasma frequency, the incid
pulse is absorbed by the plasma before being reemitted.
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APPENDIX: PROPAGATION
OF A HIGH-FREQUENCY PULSE

Let vct→t, vcx/c→x, and vp /vc→e, so thatt and x
become dimensionless. Then the wave equation~1! can be
written as

~] tt
2 2]xx

2 1e2!E50. ~A1!

The study of pulse propagation is facilitated by the char
teristic transformation

t5t2bx,j5x2bt, ~A2!

whereb,1. In terms of the characteristic variablest andj,
the wave equation~A1! can be rewritten as

@~12b2!~]tt
2 2]jj

2 !1e2#E50. ~A3!

One can solve Eq.~A3! by using multiple scale analysi
@5#. To do this, one introduces the time and distance sca

tn5ent,jn5enj. ~A4!

Correct to second order, one can write

]t']t0
1e]t1

1e2]t2
,

]j']j0
1e]j1

1e2]j2
. ~A5!

Guided by the well-known characteristics of a long pulse,
assume that

b'11e2b21e4b4 ~A6!

and

E~t,j!5B~t2 ,j1!exp~2 i t0!. ~A7!
nt

-
f

i-
-

-

s

e

Ansatz ~A7! corresponds to a pulse that has a carrier f
quency of unity and an amplitude that varies on the sl
scalej1. For this amplitude variation,b is the group speed o
the pulse, and the characteristic variables are proportiona
time and distance measured in the pulse frame. One
substitutes Eqs.~A5!–~A7! in Eq. ~A3! and collects terms of
like order. The zeroth- and first-order equations are satis
automatically by construction.

In second order,

@22b2~]t0t0

2 2]j0j0

2 !11#E50. ~A8!

It follows from Eq. ~A8! and ansatz~A7! that

b2521/2. ~A9!

In third order,

24b2~]t0t1

2 2]j0j1

2 !E50. ~A10!

Equation~A10! is consistent with ansatz~A7!, in which E is
assumed to be independent ofj0 andt1. In fourth order,

2@4b2~]t0t2

2 2]j0j2

2 !12b2~]t1t1

2 2]j1j1

2 !1~2b41b2
2!

3~]t0t0

2 2]j0j0

2 !#E50. ~A11!

The pulse has a carrier frequency of unity by construction
the dependence ofE on t2 cannot be oscillatory. It follows
from this constraint that (2b41b2

2)50 and, hence, that

b4521/8. ~A12!

The group speedb'12e2/22e4/8, which is just the first
three terms in the Maclaurin expansion of (12e2)1/2. The
remaining nonzero terms in Eq.~A11! are

~2i ]t2
1]j1j1

2 !B50, ~A13!

which describe the dispersal of the pulse.
Finally, note that ansatz~A7! constrains the phase spee

to be the inverse of the group speed. Since no contradict
appear in the subsequent analysis, the assumptions und
ing ansatz~A7! are correct. One can also use the ansatz

E~t,j!5B~t2 ,j1!exp@ inj02 i ~12nb!t0#, ~A14!

which does not constrain the phase speed, but leads to
same result.
s
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